FEMU based identification of the creep behavior of Zircaloy-4 claddings under simulated RIA thermo-mechanical conditions

نویسندگان

چکیده

This study aims to identify the creep behavior of Zircaloy-4 fuel claddings under simulated reactivity initiated accident (RIA) thermo-mechanical conditions. In a previous work ballooning tests performed in RIA conditions were described. A challenge overcome when analyzing these experiments is that imply structural effects during deformation specimen have be taken into account material. this paper FEMU (finite element model updating) based identification proposed law cladding, weakly coupled phase transformation material at high temperatures. Since loading are solely known part optical field cameras used for stereocorrelation, only region modeled using Love-Kirchhoff assumption impose boundary through sample thickness. Norton law, whose parameters expressed as function β fraction material, identified and reproduces first 10 s with mean errors on radial displacement rates about 10%. Finally, an extension higher time scale Norton’s non linearity response by taking grain growth contribution.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermo-mechanical behavior of EUV pellicle under dynamic exposure conditions

The utilization of EUV pellicles as protective layers for EUV masks requires the use of refractory materials that can tolerate large temperature excursions due to the non-negligible absorption of EUV radiation during exposure. Additionally, the mechanical stress induced on the EUV pellicle by the thermal load is dependent on the thermal expansion of the material which can be responsible for tra...

متن کامل

the effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)

cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...

Time-Dependent Thermo-Electro-Mechanical Creep Behavior of Radially Polarized FGPM Rotating Cylinder

Time-dependent creep analysis is crucial for the performance and reliability of piezoactuators used for high-precision positioning and load-bearing applications. In this study history of stresses, deformations and electric potential of hollow rotating cylinders made of functionally graded piezoelectric material (FGPM), e.g., PZT_7A have been investigated using Mendelson’s method of successive e...

متن کامل

Thermophysical and Mechanical Analyses of UO2-36.4vol % BeO Fuel Pellets with Zircaloy, SiC, and FeCrAl Claddings

The thermophysical performance and solid mechanics behavior of UO2-36.4vol % BeO fuel pellets cladded with Zircaloy, SiC, and FeCrAl, and Zircaloy cladding materials coated with SiC and FeCrAl, are investigated based on simulation results obtained by the CAMPUS code. In addition, the effect of coating thickness (0.5, 1 and 1.5 mm) on fuel performance and mechanical interaction is discussed. The...

متن کامل

Exact Solution for Electro- Thermo- Mechanical Behavior of Composite Cylinder Reinforced by BNNTs under Non- Axisymmetric Thermo- Mechanical Loads

In this research, static stresses analysis of boron nitride nano - tube reinforced composite (BNNTRC) cylinder made of poly - vinylidene fluoride (PVDF) subjected to non - axisymmetric thermo - mechanical loads and applied voltage is developed. The surrounded elastic medium is modelled by Pasternak foundation. Composite structure is modeled based on piezoelectric fiber reinforced composite (PFR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nuclear Materials

سال: 2022

ISSN: ['1873-4820', '0022-3115']

DOI: https://doi.org/10.1016/j.jnucmat.2022.153542